午夜色婷婷,亚州男女性爱视频,jzzjzzjzz亚洲,无码无遮挡小视频在线观看

全國咨詢熱線:133-1680-5165

首頁 行業(yè)新聞

關于AI智能領域,電源ic不得不說的事情

2019-02-25 15:15:50 

編者按:關心AI的人一定希望了解這個行業(yè)的新發(fā)展趨勢,近行業(yè)分析機構CBInsights近發(fā)布了2019年AI趨勢報告正好能滿足這個需求。這份84頁的報告識別了25種AI趨勢,運用CBInsights的NExTT分析框架,從行業(yè)采用度和市場優(yōu)勢兩個維度對其進行歸類,可以為不同參與角色提供決策參考。電源管理IC,電源ic,充電ic,肖特基二極管,電源ic廠家,開關電源芯片

其關鍵發(fā)現(xiàn)是對電子商務搜索詞的上下文理解正在擺脫“試驗”階段,不過距離廣泛采用還有很長一段路要走;深度學習是當前絕大部分AI應用的引擎。不過因為膠囊網(wǎng)絡,這種技術可能需要改進一下了;與生物測定領域的研究人員正在開始利用神經(jīng)網(wǎng)絡研究和測定此前難以量化的非典型風險因素;能訪問大型標簽化的數(shù)據(jù)是訓練AI算法的必需,而逼真的仿造數(shù)據(jù)也許能解決這一瓶頸。

為了方便各位了解,36氪對這25種趨勢進行摘要編譯介紹。電源管理IC,電源ic,充電ic,肖特基二極管,電源ic廠家,開關電源芯片

必需

開源框架

AI的進入門檻變得的低,這要感謝開源軟件。

以2015年Google開源TensorFlow機器學習庫為開端,現(xiàn)在AI(尤其是深度學習)的開源框架已經(jīng)形成百花齊放的局面,其中有Facebook的PyTorch、特利爾學習算法研究所(MILA)的Theano、Keras、Microsoft Cognitive Toolkit以及Apache MXNet等等。電源管理IC,電源ic,充電ic,肖特基二極管,電源ic廠家,開關電源芯片

開源AI框架是雙贏的局面:一方面令人人都能用上AI;反過來,貢獻者社區(qū)也為加速Google等公司的AI研究提供了幫助。

AIYoshua Bengio表示:

支持深度學習研究的軟件生態(tài)體系發(fā)展得很快,現(xiàn)在已經(jīng)達到了一種健康的狀態(tài):開源軟件成為規(guī)范;各種框架出現(xiàn),滿足了從探索新穎想法到生產(chǎn)部署的各種需求。而且不同的軟件堆棧也在的競爭氛圍下得到了有力的行業(yè)玩家的支持。

邊緣AI

對實時決策的需求正在將AI推向靠近邊緣的地方。

在智能手機、汽車甚可穿戴設備等邊緣設備上運行AI算法,而不是跟云平臺或服務器通信,使得邊緣設備具備了在本地處理信息的能力,并且可以更快速地對情況做出響應。

Nvidia、高通、蘋果及若干初創(chuàng)企業(yè)均在開發(fā)用于邊緣的AI專用芯片。

邊緣AI對消費者電子、電信、影像等主業(yè)均有應用意義。比方說監(jiān)控攝像頭的人臉識別、華為、蘋果等智能手機的人臉與對象識別、Tesla AI芯片的即時駕駛決策、嬰兒監(jiān)視器、無人機、機器人視覺能力(無互聯(lián)網(wǎng)連接)等。

在2018年各大公司的財報會上,提到邊緣計算的次數(shù)已經(jīng)明顯增多。

不過盡管邊緣AI具有減少延時的優(yōu)勢,但也存在局限。那就是存儲和處理能力受到限制。預計會有更多混合模式出現(xiàn),使得智能邊緣設備能夠相互溝通以及與服務器通信。

臉部識別

從手機解鎖到登機手續(xù),人臉識別正在進入主流。

人臉識別在的媒體熱度從2016年開始就不斷升溫。

對人臉識別技術的需求也與之同步。在這方面已經(jīng)冒出了商湯科技、Face++、CloudWalk等獨角獸。

美國這方面的的專利申請也呈現(xiàn)相似的趨勢。

人臉識別的早期商業(yè)應用正在安保、零售及消費者電子領域出現(xiàn),并且迅速成為生物特征識別的主流形式。

盡管人臉識別應用日益廣泛,但這種技術并不是沒有瑕疵。曾有報道稱Amazon將一位國會議員認成了犯罪份子。華爾街日報記者用一張校長照片作為面具就輕易騙過了西雅圖一所學校的智能攝像頭。

影像與診斷

美國FDA正在給AI即設備開綠燈。

2018年4月,F(xiàn)DA批準了無需補充意見進行篩查糖尿病視網(wǎng)膜病變病人的AI軟件。該軟件叫做IDx-DR,其識別率達到了87.4%,對沒有此病的識別率也達到了89.5%。

此外,F(xiàn)DA批準了初創(chuàng)企業(yè)Via.ai的CT掃描與潛在中風癥狀通知軟件Viz LVO,以及初創(chuàng)企業(yè)Arterys的Oncology AI軟件包,后者可以識別肺部與肝臟損傷。

監(jiān)管的放松給商業(yè)化開辟了新的道路。自2014年以來,共有80家AI影像與診斷公司完成了149項融資交易。

初創(chuàng)企業(yè)Healthy.io的款產(chǎn)品Dip.io利用率了傳統(tǒng)的尿液分析試紙來監(jiān)控若干尿路感染:用戶用智能手機拍攝試紙照片,計算機視覺算法就能根據(jù)不同的光照情況和相機品質(zhì)對結(jié)果進行校正。產(chǎn)品可檢測感染及懷孕相關的并發(fā)癥。已在歐洲、以色列商用的Dip.io也已獲得FDA放行。

預測性維護

AI工業(yè)物聯(lián)網(wǎng)可為從制造商到設備保險商的既有者節(jié)省數(shù)百萬美元的意外故障損失。

預測性維護利用傳感器及智能攝像頭不斷采集機器數(shù)據(jù)(如溫度、壓力等)。生成的實時數(shù)據(jù)的規(guī)模以及格式的多樣使得機器學習成為工業(yè)物聯(lián)網(wǎng)不可或缺的組件。假以時日,算法就能夠提前預測故障。

工業(yè)傳感器成本的下降,機器學習算法的進展,以及邊緣計算的推進,這些均使得預測性維護的應用變得更加廣泛。

從下圖可以看出,對領域的投資正在逐年遞增。

其中活躍的投資者包括GE Ventures、西門子、SAP等。甚微軟等大公司也對自己的云與邊緣分析解決方案進行擴展,提供預測性維護能力。

電子商務搜索

對搜索詞的上下文理解已經(jīng)走出“試驗”階段,但是大規(guī)模采用仍有很長一段路要走。

自2002年以來,Amazon已經(jīng)申請了35項與“搜索結(jié)果”有關的美國專利。其中包括利用卷積神經(jīng)網(wǎng)絡“確定一組圖像與查詢圖像類似的物品”,利用機器學習分析圖像的視覺特征,并基于此建立搜索查詢等。

eBay則利用機器學習來分析賣家的產(chǎn)品描述,然后借此尋找同類產(chǎn)品。

但是很多買家都是使用自然語言來進行查詢,這對電子商務搜索構成了挑戰(zhàn)。新興初創(chuàng)企業(yè)于是開始為零售商提供搜索技術。

圖像搜索初創(chuàng)企業(yè)ViSenze的客戶包括Uniqlo、Myntra、樂天等。它可以讓進店客戶拍攝喜歡的東西的照片,然后上傳,在網(wǎng)上找到同樣的產(chǎn)品。

獲得阿里投資的以色列初創(chuàng)企業(yè)Twiggle正在基于電子商務搜索引擎開發(fā)語義API,對買家的特定搜索做出響應。

試驗

膠囊網(wǎng)絡

深度學習是當今絕大部分AI應用的引擎。但由于膠囊網(wǎng)絡,這種技術現(xiàn)在可能需要改進一下了。

膠囊網(wǎng)絡(CapsNet)是深度學習先驅(qū)Geoffrey Hinton 2017-18年時提出的概念,旨在克服當前圖像識別方法(主要是卷積神經(jīng)網(wǎng)絡CNN)的缺陷。

這種缺陷主要有2個。一是難以識別精確空間關系。比方說右圖中盡管嘴巴的相對位置發(fā)生了改變,CNN仍會將其識別成人臉。

二是無法從新的視角去理解對象。比方說下圖中膠囊網(wǎng)絡在識別1、2行為同一玩具的不同視角中表現(xiàn)要比CNN出色得多。CNN則需要更大的訓練數(shù)據(jù)集才能認出每個方向的對象。已經(jīng)有黑客通過引入少量噪音就能讓CNN把目標誤認成其他對象。

盡管目前對膠囊網(wǎng)絡的研究仍處在初期階段,但有可能對目前的圖像識別方法構成挑戰(zhàn)。

下一代修復術

非常早期的研究正在出現(xiàn),通過生物、物理、機器學習的結(jié)合來解決修復術困難的問題之一:靈敏性。

從2006年開始,DARPA就投入了數(shù)百萬美元跟約翰霍普金斯大學合作修復術計劃來幫助受傷的老兵。但是這個問題解決起來并不容易。

比方說讓截肢者活動假肢的手指,對自發(fā)運動背后的大腦和肌肉信號進行解析,然后再轉(zhuǎn)換為自動控制均需要跨學科的知識。

近,研究人員已經(jīng)開始利用機器學習對植入人體的傳感器的信號進行解碼,然后將之翻譯為移動假肢設備的指令。

約翰霍普金斯大學的應用物理實驗室一個進行中的項目就是利用“神經(jīng)解碼算法通過”神經(jīng)接口來控制假肢的。

去年6月,德國及帝國理工學院的研究人員利用機器學習解碼截肢者殘肢的信號,并讓計算機來控制機械臂。

另一個思路是利用中介解決方案,比如利用肌電信號來攝像頭,然后再用計算機視覺算法估計抓手類型以及面前物體的大小。

臨床試驗登記

臨床試驗的大瓶頸在于登記合適的病人庫。蘋果有可能可以解決這個問題。

互操作性——也就是跨機構和軟件系統(tǒng)分享信息的能力——是的大問題之一,盡管有了病歷數(shù)字化的努力。

臨床試驗在這方面問題尤其嚴重,將合適的試驗與適當?shù)牟∪诉M行匹配是很耗時且充滿挑戰(zhàn)的過程。而光美國目前就有18000項臨床研究正在招募病人。

理想的AI解決方案是由人工智能軟件析取病人病歷的相關信息,將之與進行中的試驗進行對比,然后給出匹配的研究建議。

在病人與計劃匹配方面,蘋果等技術巨頭已經(jīng)取得了一定的成功。

從2015年開始,蘋果就推出了2個開源框架——ResearchKit與CareKit——來幫助臨床試驗招募病人,并且遠程監(jiān)控病人的健康狀況。這些框架使得研究人員和開發(fā)者得以創(chuàng)建app來監(jiān)控人們的日常生活,了登記的地理障礙。蘋果還在跟熱門的電子病歷供應商合作解決互操作性問題。

2018年6月,蘋果面向開發(fā)者推出了Health Records API。用戶現(xiàn)在可以選擇向第三方應用和研究人員分享數(shù)據(jù),為管理與生活方式監(jiān)控打開新的機會。

生成對抗網(wǎng)絡(GAN)

兩個互相比聰明的神經(jīng)網(wǎng)絡正在變得非常擅長創(chuàng)作出逼真的圖像。

你能認出下面哪些圖像是假的嗎?

答案是全都是。這些全都是GAN創(chuàng)造出來的。

生成對抗網(wǎng)絡是非監(jiān)督式學習的一種方法,通過讓兩個神經(jīng)網(wǎng)絡相互博弈的方式進行學習。該方法由Google研究人員Ian Goodfellow于2014年提出。生成對抗網(wǎng)絡由一個生成網(wǎng)絡與一個判別網(wǎng)絡組成。生成網(wǎng)絡從潛在空間(latent space)中隨機采樣作為輸入,其輸出結(jié)果需要盡量模仿訓練集中的真實樣本。判別網(wǎng)絡的輸入則為真實樣本或生成網(wǎng)絡的輸出,其目的是將生成網(wǎng)絡的輸出從真實樣本中盡可能分辨出來。而生成網(wǎng)絡則要盡可能地欺騙判別網(wǎng)絡。兩個網(wǎng)絡相互對抗、不斷調(diào)整參數(shù),終目的是使判別網(wǎng)絡無法判斷生成網(wǎng)絡的輸出結(jié)果是否真實。

擴充GAN式的大規(guī)模項目的主要挑戰(zhàn)是計算能力。Google研究人員在創(chuàng)建“BigGAN”用了512塊TPU來創(chuàng)建512像素的圖像,一次試驗的電耗大概就要2450到4915千瓦時之間。這已經(jīng)相當于普通美國家庭半年的電耗。

而且GAN要想擴充,AI硬件也的并行擴充。

除了有趣的試驗以外,GAN也有其他嚴肅的用途,比如假冒政治視頻和色情作品的換臉等。隨著GAN研究的擴大,這種技術勢必會對新聞、媒體、藝術及網(wǎng)絡構成挑戰(zhàn)。GAN已經(jīng)改變了我們訓練AI算法的方式。

聯(lián)邦學習

這種新方法旨在用敏感用戶數(shù)據(jù)訓練AI的同時保護隱私。

我們跟智能設備的日?;涌梢援a(chǎn)生豐富的數(shù)據(jù),這些數(shù)據(jù)用于訓練AI算法的話可以極大地其表現(xiàn),比如可以更加精確地預測你接下來要輸入的字是什么。但是這些用戶數(shù)據(jù)也會涉及到個人隱私問題。

Google于是提出了聯(lián)邦學習的方案,旨在利用這一豐富數(shù)據(jù)集的同時保護敏感數(shù)據(jù)。簡而言之,你的數(shù)據(jù)依然留在你的手機里,不會發(fā)送或存儲到云服務器上。而是由云服務器將新版的算法(算法的“全局狀態(tài)”)發(fā)往隨機選擇的用戶設備上。

你的手機做出改進然后基于本地化的數(shù)據(jù)對模型進行更新。之后只有這種更新(以及來自其他用戶的更新)會回傳給云服務器以該“全局狀態(tài)”,然后再不斷重復這一過程。

把單個更新聚合起來的做法其實并不新鮮,其他算法早就這樣做了。聯(lián)邦學習的不同在于它考慮了數(shù)據(jù)集的兩個重要特征:

Non-IID:其他分布式算法均假設數(shù)據(jù)是獨立同分布(Independent and identically distributed,IID)的,但其實每一部手機生成的數(shù)據(jù)都是的,因為不同的人使用習慣不同,聯(lián)邦學習考慮到了這種不同。不平衡:某些用戶使用app更加活躍,自然也會產(chǎn)生更多的數(shù)據(jù)。因此每一部手機的訓練數(shù)據(jù)量也不一樣。Firefox自稱是在重要軟件項目中首個實現(xiàn)聯(lián)邦學習的用例之一。當用戶在瀏覽器輸入URL時,F(xiàn)irefox會利用聯(lián)邦學習進行URL推薦排名。

AI初創(chuàng)企業(yè)OWKIN則利用聯(lián)邦學習來保護敏感的病人數(shù)據(jù)。其方案可以讓不同的癌癥在病人數(shù)據(jù)不離開本地的情況下進行協(xié)作。

生物測定

研究人員正在開始利用神經(jīng)網(wǎng)絡來研究和測定此前難以量化的非典型風險因素。

Google的研究人員利用視網(wǎng)膜圖像訓練神經(jīng)網(wǎng)絡,然后再用該神經(jīng)網(wǎng)絡去尋找心血管風險因素。其研究發(fā)現(xiàn),通過視網(wǎng)膜不僅可以識別年齡、性別、抽煙習慣等風險因素,還可以對這些因素量化到一定的精確程度。

類似地,梅奧診所也跟以色列初創(chuàng)企業(yè)Beyond Verbal合作,通過分析聲音的聲學特征來尋找冠心病人的聲音特性。研究發(fā)現(xiàn),當受試者描述一段情感經(jīng)歷時,有兩個聲音特性跟冠心病存在強關聯(lián)。

初創(chuàng)企業(yè)Cardiogram近的研究發(fā)現(xiàn),利用深度學習,糖尿病引起的心率變異性改變可通過現(xiàn)成的可穿戴心率傳感器檢測出來。其檢測精確率可達85%。

AI尋找模式的能力將會繼續(xù)為新的診斷方法和識別此前未知的風險因素開辟新的道路。

自動索賠處理

保險公司和初創(chuàng)企業(yè)正開始用AI計算車主的“風險評分”,對事故場景圖片進行分析,并監(jiān)控司機行為。

螞蟻金服在“事故處理系統(tǒng)”中利用了深度學習算法來進行圖片處理。過去需要理算員現(xiàn)場處理的事情現(xiàn)在可以由圖像處理承擔了。車主只需上傳車輛照片給螞蟻金服,神經(jīng)網(wǎng)絡就會分析圖片,自動進行損失評估。

螞蟻金服還建立了司機的風險檔案來影響車險的定價模型。他們引入了所謂的“車險分”,基于信用記錄、消費習慣、駕駛習慣等利用機器學習計算車主的風險評分。

初創(chuàng)企業(yè)Nexar鼓勵司機把自己的智能手機當成行車記錄儀使用,并且將記錄上傳給Nexar app。車主的好處是可以有車險的折扣。

拿到視頻的app會利用計算機視覺算法監(jiān)控路況、司機行為以及事故。App還提供了“事故重現(xiàn)”功能,并與保險客戶合作處理索賠。

初創(chuàng)企業(yè)Tractable可以讓保險公司將受損車輛圖片及車損估價上傳到其索賠管理平臺。“AI Review”功能就可以將這些資料與庫中的幾千圖片對比,然后進行相應的定價調(diào)整。

防偽/打假

假貨越來越難以識別,而在線購物又讓賣假貨變得的便利。為此,品牌商正在開始利用AI來打假。

拼多多在18年Q3財報會上提了11次“假貨”,稱“打擊假貨和不誠信商家非常困難。”

品牌正在兩條戰(zhàn)線上對抗假貨的沖擊:

在線上,需要識別并讓侵權商品下架。在線下,需要識別宰客的假貨(如手包)。阿里巴巴正在利用深度學習持續(xù)掃描自家平臺以發(fā)現(xiàn)IP侵權的情況。它利用了圖像識別來確認圖片的特征,再加上語義識別,從而監(jiān)控上架商品圖片中是否有品牌名稱或者口號。

造假者會利用跟品牌十分類似的關鍵字和圖片來銷售假貨。而且他們就像牛皮蘚一樣,一旦假貨下架之后,他們又會換一組關鍵詞重新發(fā)布同樣的假貨。

初創(chuàng)企業(yè)Red Points正在利用機器學習掃描網(wǎng)站潛在的侵權情況,并且找出造假者使用的關鍵字選擇模式。

線下打假就更加棘手了,而且需要更大的人力。

賣家賣或者典當二手奢侈品手包時,驗證過程通常需要鑒定親自檢查手包的工藝、材料及縫線模式。

但是一些A貨已經(jīng)逼真到肉眼無法辨別的地步。

初創(chuàng)企業(yè)Entrupy 跟鑒定合作建立真品、贗品數(shù)據(jù)庫來訓練算法已有2年時間。他們利用一種可以連接智能手機的便攜式顯微鏡讓用戶拍照上傳物件圖片,算法再分析是否具備真品獨有的微觀特征。不過這種辦法也有局限性。因為大多數(shù)按照標準規(guī)定制造的產(chǎn)品都有類似的特征(造假者也運用了這些工藝)。而且像芯片、納米材料這樣的東西并不適用。

Cypheme采用的是另一種辦法?;谌斯ぶ悄艿姆纻嗡菰醇夹g,通過使用特種紙張作為媒介制作標簽,并可進行產(chǎn)品溯源。公司宣稱這種標簽使用了技術,是無法仿造的。而且即便標簽是原件,如果不在數(shù)據(jù)庫中有記錄,產(chǎn)品也會被識別為假貨。

免收銀零售

進店、拿貨、出門,這幾乎給人感覺就是入店行竊。AI可以讓過去被視為盜竊的事情及免收銀零售變得更加常見。

Amazon Go就徹底取消了收銀流程,讓顧客進店取貨即走。但是Amazon并沒有詳細介紹過未來的運營和商業(yè)計劃,只是說實現(xiàn)利用了傳感器、攝像頭、計算機視覺及深度學習算法但否認使用了人臉識別技術。

像Standard Cognition和AiFi這樣的初創(chuàng)企業(yè)則抓住了機會,將Amazon Go的方案普及到零售商。免收銀商店的一大挑戰(zhàn)是如何向適當?shù)念櫩褪杖≌_的費用。

迄今為止Amazon Go是成功的商業(yè)案例,但是這個案例有很多因素是受控的。只有Prime會員才能進店。其他人要想效仿,先建立起自己的會員制。

AiFi的方案是如果下載其app就可以拿貨走人,不愿意下載的可以單獨開辟收銀臺。但是商店的基礎設施應如何支持這兩種方案尚不清楚。

另一大問題是銷售點存貨損耗問題,比如算錯錢或者偷盜。依圖與東芝的智能收銀攝像頭是其中一些解決方案。但是防偷盜問題與運營范圍和規(guī)模相關。Amazon Go只有1800到3000平方英尺,但使用的攝像頭就達到了數(shù)百個。幾乎把每一寸地方都覆蓋到了。但傳統(tǒng)的超市一般都有40000平方英尺或以上,需要解決攝像頭如何布局才能的問題。

此外,由于商品種類繁多,如何才能識別哪位購物者取走了哪件商品呢?這些需要重量傳感器、攝像頭以及計算機視覺算法足夠強大。

Standard Cognition跟日本大的CPG批發(fā)商百陸達合作,宣稱要在2020年東京奧運會前改造3000家店鋪。AiFi據(jù)報道已有20個零售商客戶。

近期而言,這項技術的發(fā)展要取決于部署成本及存貨損失成本,以及零售商能否承擔這些成本和風險。

后端辦公自動化

AI正在對事務性工作進行自動化,但是數(shù)據(jù)的不同屬性和格式會對這項工作構成挑戰(zhàn)。

不同的行業(yè)和應用都有其的挑戰(zhàn)。

比方說臨床試驗里面很多試驗都是手寫記錄然后數(shù)字化的。但是這種格式往往難以搜索,而手寫的臨床記錄又會對自然語言處理構成挑戰(zhàn)。車險索賠自動處理中評估損傷和追溯事故根源時也會遇到麻煩。

不過不同的板塊都在開始不同程度地采用基于機器學習的工作流解決方案。

機器人流程自動化(Robotic Process Automation ,RPA)泛指任何重復性的后端事務性工作的自動化,近是炒作的主題之一。但就像AI一樣,這個詞涉及內(nèi)容也是包羅萬象,從數(shù)據(jù)錄入到合規(guī)性檢查、交易處理、客戶培訓不等。

很多ML解決方案已經(jīng)開始將圖像識別與語言處理整合到一起。電源管理IC,電源ic,充電ic,肖特基二極管,電源ic廠家,開關電源芯片

比如WorkFusion就把了解客戶與反洗錢這樣的后端運營工作自動化了。

獨角獸UiPath的服務已擁有700多家企業(yè)客戶,包括DHL、NASA、HP等。

Automation Anywhere是另一家獨角獸。該公司有一個案例是跟一家全球銀行合作,用機器學習進行自動化人力資源管理。“IQ機器人”會從多個國家多種語言提交的表格中提取信息、清洗數(shù)據(jù),然后自動錄入到人力資源管理系統(tǒng)內(nèi)。

不過RPA在很多行業(yè)尚處在起步階段,有的在疊加預測性分析曾之前還得閑解決數(shù)字化的問題。

語言翻譯

語言翻譯的NLP既是挑戰(zhàn)也是有待發(fā)掘的市場機遇。大公司正在挑戰(zhàn)極限。

機器翻譯在后端辦公自動化存在著巨大商機,在跨國組織、客戶支持、新聞&媒體等領域均有應用機會。

百度的耳機翻譯器跟Google Pixel buds類似,據(jù)稱能完成40種語言的實時互譯。

有的初創(chuàng)企業(yè)比如Unbabel則引入了人參與到記憶翻譯系統(tǒng)當中,目標是用反饋回環(huán)來訓練算法改進。

1年前,Yoshua Bengio提出了用神經(jīng)網(wǎng)絡架構來取代傳統(tǒng)統(tǒng)計法的翻譯方案,后來Google就升級了Google Translate Tool的算法。Google原先采用的是基于短語的機器翻譯(PBMT),其新的工具采用了神經(jīng)機器翻譯(GNMT)方案,并且提出了解決訓練模型時遇到的時間和計算資源問題的解決方案。

不過近的突破卻是來自Facebook的。據(jù)稱其突破在于過去的方法只有在資源豐富的語種互譯時比較有效,但對少數(shù)語種的翻譯就比較有局限性。Facebook提出了一種可學習 93 種語言的聯(lián)合多語言句子表征架構。該架構僅使用一個編碼器,且可在不做任何修改的情況下實現(xiàn)跨語言遷移。

隨著大公司不斷投入資源到改進翻譯框架之中,翻譯效率和語言能力也將得到,預計機器翻譯將會在更多行業(yè)得到采用。

合成訓練數(shù)據(jù)

訓練AI算法離不開大規(guī)模的標簽數(shù)據(jù)集。而逼真的仿造數(shù)據(jù)有望解決這個瓶頸問題。

AI算法的表現(xiàn)取決于獲得的數(shù)據(jù),但是為不同應用獲取數(shù)據(jù)并給數(shù)據(jù)打上標簽卻是耗時耗錢的活兒,甚沒有可行性(不妨設想無人車需要的危險情況數(shù)據(jù))。

合成數(shù)據(jù)集可以解決這個問題。

2018年3月,英偉達推出了NVIDIA推出DRIVE Constellation仿真系統(tǒng),稱可以在虛擬現(xiàn)實環(huán)境中測試自動駕駛汽車行駛數(shù)十億英里。

比方說設想無人車行駛過程中遇到雷暴。英偉達的解決方案會模擬這種情況下車載傳感器(攝像頭或LiDAR)會生成什么樣的數(shù)據(jù)。合成的傳感器數(shù)據(jù)再提供給計算機進行決策,就好像自己真的在開車一樣,然后把命令回傳給虛擬汽車。

一個有趣的新興趨勢是利用AI本身幫助生成更“逼真”的合成圖像來訓練AI。比方說英偉達就用GAN來生成假的腦瘤MRI圖像。

GAN可用來“增強”現(xiàn)實世界數(shù)據(jù),意味著AI可以用混合現(xiàn)實世界和模擬數(shù)據(jù)來進行訓練,從而形成更大規(guī)模更多樣化的數(shù)據(jù)集。

機器人是另一個極大受益于高精度合成數(shù)據(jù)的領域之一。

類似AI.Reverie這樣的早期階段初創(chuàng)企業(yè)正在開發(fā)仿真平臺為不同行業(yè)和場景生成數(shù)據(jù)集。

隨著技術的發(fā)展以及合成數(shù)據(jù)能夠更精確地模擬現(xiàn)實場景,預計這會成為無法獲取大規(guī)模數(shù)據(jù)集的小公司的催化劑。

威脅

強化學習

從訓練算法擊敗棋類游戲的世界,到教AI耍雜技,研究人員正在用強化學習挑戰(zhàn)極限。但對大規(guī)模數(shù)據(jù)集的需求目前限制了實際應用。

強化學習因為DeepMind的AlphaGo而引起了媒體的大量關注。

簡而言之,強化學習的要點就是為了實現(xiàn)目標獲得大回報你需要干什么?

也正因為此,強化學習在游戲和機器人仿真方面的發(fā)展好。

DeepMind的AlphaGo一開始是利用率有監(jiān)督學習(用其他人類玩家數(shù)據(jù)訓練算法)和強化學習(AI跟自己下)的。

不過后來的AlphaGo Zero就完全是用強化學習來實現(xiàn)超人的表現(xiàn)了。

近加州大學伯克利分校的研究人員開始用計算機視覺和強化學習教算法學習YouTube視頻上的雜耍視頻。在無需人工標記姿勢的情況下,計算機仿真角色就能重復視頻里面的動作。而且還能在新環(huán)境中應用學到的技能。

不過強化學習的采用情況跟目前普遍的有監(jiān)督學習完全不能同日而語。但強化學習的專利申請情況卻是在不斷增長的。

網(wǎng)絡優(yōu)化

從頻譜共享到資產(chǎn)監(jiān)控乃于天線的優(yōu)化設計,AI正在開始改變電信。

電信網(wǎng)絡優(yōu)化是一組改進延時、貸款、設計或者架構的技術,任何以有利的方式增強數(shù)據(jù)流的東西都算。對通信服務提供商來說,優(yōu)化會直接轉(zhuǎn)化為更好的客戶體驗。

除了帶寬限制之外,通信面臨的大挑戰(zhàn)之一是網(wǎng)絡時延。類似手機AR/VR這樣的應用只有在時延極低的情況下才好用。

蘋果近被授予了一項專利,就是用機器學習來組建“預期網(wǎng)絡”,預計像智能手機這樣的無線設備在未來可能會執(zhí)行什么樣的操作,從而提前下載數(shù)據(jù)包以降低時延。

機器學習的另一項新興應用是頻譜共享。

頻譜共享是解決頻率資源短缺的必然之道。FCC(美國聯(lián)邦通信委員會)要求,3.5到3.7GHz頻段由不同用戶共享。也就是說運營商可基于可用性動態(tài)訪問共享的頻譜,從而可以根據(jù)網(wǎng)絡需求對帶寬進行調(diào)整。而沒有獲得專用頻譜許可的較小商業(yè)用戶也可以訪問。

像Federated Wireless這樣的公司提供了Secure Spectrum Access(SAS,頻譜訪問)來動態(tài)分配頻譜給不同等級的用戶,確保不會造成干擾。

2018年,F(xiàn)ederated Wireless被授予了一項專利,該專利運用了機器學習技術來對無線信號進行分類,同時又隱藏了聯(lián)邦信號的特征,從而避免被黑客利用。

DARPA則希望終能從SAS轉(zhuǎn)到完全基于ML的自動化系統(tǒng)。為此它在2016年推出了鼓勵參賽者想出自主協(xié)作動態(tài)分配頻譜辦法的Spectrum Collaboration Challenge。并在2017年推出了Radio Frequency Machine Learning Systems,跟Federated Wireless的方案類似,DARPA也是希望用ML區(qū)分不同類型的信號。

電信玩家也準備將基于AI的解決方案整合進下一代無線通信技術,也就是5G當中。

三星為了應對5G時代的到來而收購了基于AI的網(wǎng)絡與服務分析初創(chuàng)企業(yè)Zhilabs,稱其軟件將用于分析用戶流量,對應用進行分類,整體服務質(zhì)量。

高通則把AI邊緣計算看作其5G計劃的關鍵部分。

還有一些研究論文開始探索用神經(jīng)網(wǎng)絡來設計優(yōu)化的天線。

無人車

盡管無人車市場商機無限,但何時實現(xiàn)全自動尚不明朗。

大量技術巨頭和初創(chuàng)企業(yè)正在這個領域拼得頭破血流。

這個領域富盛名的是Google。其Waymo已經(jīng)在率先部署了無人車商業(yè)車隊。

投資者的投資熱度依然沒有消退。去年GM的Cruise Automation就拿到了10多億美元的融資,Zoox也融了5億美元。其他的初創(chuàng)企業(yè)還包括Drive.ai、Pony.ai與Nuro等。

在無人車方面尤其加大了投入。2017年,百度發(fā)布了無人駕駛開放平臺阿波羅,旨在將全球合作伙伴捆綁到一起,通過生態(tài)體系其他玩家的貢獻來加速AI和無人駕駛的研究。阿里巴巴也改變了懷疑態(tài)度,近也對其無人車進行了試駕。

而盡管對這項技術的未來仍有懷疑,車企還是開足了馬力。預計到2025年該市場將達到800億美元。

一些行業(yè)有望成為無人車的個吃螃蟹者,比如物流和履約。

自動化物流——尤其是后一公里的送貨——是零售商和履約公司的頭號關切,也是有望率先實現(xiàn)全自動的領域。無人車可以幫助應對費錢費力的后一公里送貨問題(成本將近配送成本的1/3)。

像美國亞利桑那州這樣的地方對無人車部署比較友好,從而成為了熱門的試驗場。2018年6月,機器人初創(chuàng)企業(yè)Nuro開始跟美國大百貨商Kroger合作配送百貨。跟其他配送機器人不同,它的配送機器不僅在人行道行走,而且還會在社區(qū)道路行駛。

在飯店業(yè),Domino’s和必勝客是試驗無人車的先驅(qū)。福特正在邁阿密試驗配送比薩、百貨等商品。包括Domino’s在內(nèi),其合作伙伴已經(jīng)超過了70家企業(yè)。

作物監(jiān)控

三種類型的作物監(jiān)控正在農(nóng)業(yè)領域取得發(fā)展:地面、空中及地理空間。

農(nóng)業(yè)無人機市場到2021年預計將達到29億美元。

無人機可以進行土地映射、利用熱成像監(jiān)控含水量,識別蟲患以及噴灑農(nóng)藥。

初創(chuàng)企業(yè)則關注于在第三方無人機捕捉到的數(shù)據(jù)之上增加一個分析層。

比方說Taranis就用第三方的Cessna飛機來做這件事情。去年aranis還收購了農(nóng)業(yè)AI技術初創(chuàng)企業(yè)Mavrx Imaging,后者開發(fā)了超高清影像技術來巡視和監(jiān)控土地。Taranis還利用AI技術來拼接土地成像,并且來幫助識別潛在的作物問題。

農(nóng)機設備制造商John Deere也在利用AI來重塑自己。它收購了農(nóng)機設備公司Blue River Technology。后者有利用計算機視覺來進行智能除草與噴灑解決方案。

此類個體作物監(jiān)控有望成為農(nóng)業(yè)的主要顛覆者。如果地面農(nóng)機設備靠計算機視覺而變得更加智能,并且只噴灑有需求的作物的話,就可以減少對消滅附近一切的除草劑的需求。噴灑也意味著除草劑、殺蟲劑使用量的減少。

除了田地以外,計算機視覺還可以對衛(wèi)星影像進行分析,從而為農(nóng)業(yè)耕作提供宏觀層面的理解。比如嘉吉公司就投資了Descartes Labs,后者利用衛(wèi)星數(shù)據(jù)為大豆、玉米等作物建立了一個預測模型。DARPA也在跟Descartes合作來預測作物。

暫時

網(wǎng)絡威脅追捕

對網(wǎng)絡攻擊做出反應已經(jīng)不夠了。利用機器學習主動“搜尋”威脅正在網(wǎng)絡取得良好的發(fā)展勢頭。

計算能力與算法的進步正在把以前只有理論上可行的破解變成了真正的問題。2018年全球共有4.5PB的數(shù)據(jù)被盜用。相比之下,2017年為2.6PB。

跟AI的其他行業(yè)應用不一樣,網(wǎng)絡防御是黑客與人士之間的一場貓捉老鼠的游戲,雙方均利用機器學習的進步來獲取優(yōu)勢。

威脅搜尋是主動尋找惡意活動而不是對告警或者破壞情況發(fā)生后再被動反應。

搜尋從假設網(wǎng)絡存在潛在缺陷開始,然后利用手工或者自動化工具來測試該假設,這是一個持續(xù)的、不斷迭代的過程。不過網(wǎng)絡所涉及的數(shù)據(jù)量使得機器學習成為該過程不可或缺的一部分。

不過盡管不同業(yè)務對威脅捕捉均有需求,但目前仍屬于較為小眾化的方向。擁有大量數(shù)據(jù)資源的大型企業(yè)會更加關切這個東西。

比方說,Amazon就收購了威脅追捕初創(chuàng)企業(yè)Sqrrl來開發(fā)產(chǎn)品,抓捕AWS客戶賬號上的黑客。

另一家AI初創(chuàng)企業(yè)Cylance的關注點也是威脅追捕,去年也已被黑莓收購。

網(wǎng)絡的覆蓋面越廣就越容易受到攻擊。威脅追捕有可能會有更大的發(fā)展勢頭,但是這個東西本身也有挑戰(zhàn)性,比如如何應對不斷變化的動態(tài)環(huán)境以及減少誤報問題。

對話式AI

對于很多企業(yè)來說,聊天機器人已成AI的同義詞——但是希望跟不上現(xiàn)實。

Google的會話式AI功能Duplex遇到了麻煩。

Duplex可以替用戶打電話和進行預訂,而且溝通方式就像人一樣。但是這引發(fā)了道德?lián)鷳n,大家質(zhì)疑Duplex跟人對話時是否應該表明自己的身份。

Google還把Duplex集成到了自己的新手機Pixel 3里面。這讓這部智能手機成為了AI的動力室,里面還有一個“來電篩選”的選項,可以讓Google Assistant篩選掉垃圾來電。

美國的FAMGA和的BAT均在該領域投入了大量資源,但會話式AI暫時只在某些應用領域具備一定的可行性。

其中廣泛的應用之一是客戶服務。聊天機器人(注:并非所有機器人都采用自然語言處理)形成了跟用戶交互的層,然后根據(jù)復雜性程度再把查詢交給人處理。

但是和保險的應用就比較有挑戰(zhàn)性,因為這些領域的分類(測定情況的緊急程度)很復雜。

類似地,基于語音的對話式購物者沒有視覺線索的情況下也很有挑戰(zhàn)。

盡管分析師和CPG品牌均談到了語音購物可能是零售的下一個大事物,但這個東西還是沒有做起來。除了記錄特別物品外,它未能提供可帶動在線貿(mào)易的關鍵客戶體驗。

心理是聊天機器人有望成為顛覆性力量的另一個領域。

心理的高成本與全天候服務的吸引力導致了基于AI的心理機器人新時代的崛起。

早期階段初創(chuàng)企業(yè)的關注點是利用認知行為療法來作為許多情緒跟蹤和數(shù)字健康日記app的會話式擴展。

但是心理健康的范圍也很大,不同心理在癥狀、分析主觀性上各異,而且需要的情緒認知和人際互動。

所以盡管會話式AI具備成本和便利性的優(yōu)勢,但在像心理這樣的領域應用會面臨很大的困難。

藥物發(fā)現(xiàn)

隨著AI生物技術初創(chuàng)企業(yè)的出現(xiàn),傳統(tǒng)制藥公司正在尋求通過AI SaaS初創(chuàng)企業(yè)來獲得長周期的藥物發(fā)現(xiàn)的創(chuàng)新性解決方案。

2018年,輝瑞跟AI初創(chuàng)企業(yè)XtalPi達成了一項戰(zhàn)略合作關系,雙方一起合作來預測小分子的制藥屬性,并開發(fā)“基于計算的合理藥物設計”。

頂級制藥公司像諾華、賽諾菲、葛蘭素史克、安進以及默克等均在近宣布了跟AI初創(chuàng)企業(yè)的合作關系,以便為從腫瘤到心臟病等發(fā)現(xiàn)新的候選藥物。

對本領域的興趣也推動了AI藥物發(fā)現(xiàn)初創(chuàng)企業(yè)股權交易的發(fā)展,2018年Q2的交易數(shù)達到了20樁,相當于2017年全年。

像Recursion Pharmaceuticals這樣的生物技術AI公司在AI與藥物研發(fā)方面均有投入,而傳統(tǒng)制藥公司主要是跟AI SaaS初創(chuàng)企業(yè)合作。

盡管許多這樣的初創(chuàng)企業(yè)仍然處在融資的早期階段,但是均聲稱已有制藥公司客戶。

雖然藥物配方階段的成功指標寥寥無幾,但制藥公司正在押注數(shù)百萬美元到AI算法身上,希望能發(fā)現(xiàn)新穎的候選方案,并且改變?nèi)唛L的藥物發(fā)現(xiàn)流程。

網(wǎng)友熱評

中文网丁香综合网| 精品毛片| 色悠悠8页| 婷婷五月丁香开心网| 国产精品无码久久AV不卡| 亚洲第一黄色网址| 亚洲国产精品一| 久久电影天堂91| 久久99精品日韩| 欧美18p少妇| 91蜜臀精品国产自偷在线| 日本男女一区| 天天弄| 欧美亚洲熟妇一区二区| 日本久久久免费网站| 91丨porny丨在线中文| 熟女一二区| 涩少妇| 亚洲欧美精品一区二区三区| 色鬼日本888| 狠狠五月天| 天天干天天操天天摸| 日韓人妻淑女| 一区二区在线免费| AV免费观看在线| 免费在线欧美黄色影片| 伊人日一区二区精品| 中文字幕第四页| 人妻字幕丝袜中文字幕| 日韩人妻精品无码| 丁香六月久久激情| 巴马| 被黑人做到高潮| 国产精品老熟女久久久久| 性色A∨人人爽网站| 欧美精品综合视频| 国欧美九九精品在线| 色香阁婷婷基地| 人妻精品中文字幕| 国产粉嫩美腿丝袜无码| 中文字幕允奶头|